Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 201

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Precipitation and redistribution of alloying element in Zircaloy-4 cladding tube oxidized in high-temperature steam

Amaya, Masaki

High Temperature Corrosion of Materials, 15 Pages, 2024/00

 Times Cited Count:0 Percentile:0.04(Metallurgy & Metallurgical Engineering)

JAEA Reports

Data report of ROSA/LSTF experiment TR-LF-15; Accident management actions during station blackout transient with pump seal LOCA

Takeda, Takeshi

JAEA-Data/Code 2023-012, 75 Pages, 2023/10

JAEA-Data-Code-2023-012.pdf:4.45MB

An experiment denoted as TR-LF-15 was conducted on June 11, 2014 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment TR-LF-15 simulated accident management (AM) actions during a station blackout transient with TMLB' scenario with pump seal loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). This scenario is featured by loss of auxiliary feedwater functions. The pump seal LOCA was simulated by a 0.1% cold leg break. The test assumptions included total failure of both high pressure injection system and low pressure injection system of emergency core cooling system (ECCS). Also, it was presumed non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. When steam generator (SG) secondary-side collapsed liquid level dropped to a certain low liquid level, the primary pressure turned to rise. After the SG secondary-side became voided, the safety valve of a pressurizer cyclically opened which led to loss of primary coolant. Core uncovery thus took place owing to core boil-off at high pressure. When an increase of 10 K was confirmed in cladding surface temperature of simulated fuel rods, SG secondary-side depressurization was started as the first AM action. At that time, the safety valves in both SGs were fully opened. Primary depressurization was initiated by completely opening the pressurizer safety valve as the second AM action with some delay after the first AM action onset. When the SG secondary-side pressure lowered to 1.0 MPa following the first AM action, water was injected into the secondary-side of both SGs via feedwater lines with low-head pumps as the third AM action. A reduction in the primary pressure was accelerated because the heat removal from the SG secondary-side system resumed shortly after the third AM action initiation.

Journal Articles

Development of Lagrangian particle method for temperature distribution formed by sodium-water reaction in a tube bundle system

Kosaka, Wataru; Uchibori, Akihiro; Okano, Yasushi; Yanagisawa, Hideki*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.1150 - 1163, 2023/08

The leakage of pressurized water from a steam generator (SG) and the progress after that are a key issue in the safety assessment or design of a SG in sodium-cooled fast reactor. The analysis code LEAP-III can evaluate a rate of water leakage during the long-term event progress, i.e., from the self-wastage initiated by an occurrence of a microscopic crack in a tube wall to the water leak detection and water/water-vapor blowdown. Since LEAP-III consists of semi-empirical formulae and one-dimensional equations of conservation, it has an advantage in short computation time. Thus, LEAP-III can facilitate the exploration of various new SG designs in the development of innovative reactors. However, there are several problems, such as an excessive conservative result in some case and the need for numerous experiments or preliminary analyses to determine tuning parameters of models in LEAP-III. Hence, we have developed a Lagrangian particle method code, which is characterized by a simpler computational principle and faster calculation. In this study, we have improved the existing particle pair search method for interparticle interaction in this code and developed an alternative model without the pair search. Through the trial analysis simulating in a tube bundle system, it was confirmed that new models reduced the computation time. In addition, it was shown that representative temperatures of the heat-transfer tubes evaluated by this particle method code, which is used to predict the tube failure in LEAP-III, were good agreement with that by SERAPHIM, which is a detailed mechanistic analysis method code.

JAEA Reports

Data report of ROSA/LSTF experiment IB-HL-01; 17% hot leg intermediate break LOCA with totally-failed high pressure injection system

Takeda, Takeshi

JAEA-Data/Code 2023-007, 72 Pages, 2023/07

JAEA-Data-Code-2023-007.pdf:3.24MB

An experiment denoted as IB-HL-01 was conducted on November 19, 2009 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment IB-HL-01 simulated a 17% hot leg intermediate break loss-of-coolant accident due to a double-ended guillotine break of pressurizer surge line in a pressurized water reactor (PWR). The break was simulated by a long nozzle upwardly mounted flush with a hot leg inner surface. The test assumptions included total failure of both high pressure injection system of emergency core cooling system (ECCS) and auxiliary feedwater system. In the experiment, relatively large size of break led to a fast transient of phenomena. The primary pressure steeply dropped after the break, and became lower than steam generator (SG) secondary-side pressure. Break flow turned from single-phase flow to two-phase flow soon after the break. Core uncovery started simultaneously with liquid level drop in downflow-side of crossover leg before loop seal clearing (LSC). The LSC was induced in both loops by steam condensation on accumulator (ACC) coolant of ECCS injected into cold legs. The whole core was quenched owing to the rapid recovery in the core liquid level after the LSC. Peak cladding temperature of simulated fuel rods was detected almost concurrently with the LSC. During the ACC coolant injection, liquid levels recovered in the hot legs and SG inlet plena because of liquid entrainment from the hot leg into the SG inlet plenum by high-velocity steam flow. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment IB-HL-01.

Journal Articles

Validation of evaluation model for analysis of steam reformer in HTGR hydrogen production plant

Ishii, Katsunori; Aoki, Takeshi; Isaka, Kazuyoshi; Noguchi, Hiroki; Shimizu, Atsushi; Sato, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

Journal Articles

Analysis by hazard plotting on steam generator tube leak in sodium-cooled fast reactors Phenix and BN600

Kurisaka, Kenichi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

This study aims to understand a time trend of the occurrence rate of steam generator (SG) tube leak in the existing sodium-cooled fast reactors (SFRs) based on the observed data. The target on SFRs in the present paper is Phenix in France and BN600 in Russia. From the open literature review, we investigated the number of tube-to-tube plate weld, the number of tube-to-tube weld, heat transfer area of tube base metal, operating time of SGs, dates when SG tube leak occurred, leaked location, corrective action after tube leak such as replacement of leaked module. Based on these observed data, time to leak is estimated and then time trend of the occurrence rate of SG tube leak for each of the above-mentioned parts was quantitatively analyzed by the hazard plotting method. As a result, the rate of leak at tube-to-tube weld in Phenix shows increase with time due to probable cause of cyclic thermal stress in a short term. As for a long-term trend, the rate of tube leak in both Phenix and BN600 SGs indicated decrease with time probably thanks to improvement in welding and in SG operating condition and to removal of initial failure.

JAEA Reports

Annual report of Engineering Services Department on JFY2020

Engineering Services Department

JAEA-Review 2021-054, 85 Pages, 2022/01

JAEA-Review-2021-054.pdf:95.12MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2020. We hope that this report may help to future work.

JAEA Reports

Analysis of risk reduction effect of supposed steam condenser implementation as accident measure for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-013, 20 Pages, 2022/01

JAEA-Research-2021-013.pdf:2.35MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Nihon Kikai Gakkai Rombunshu (Internet), 88(905), p.21-00310_1 - 21-00310_9, 2022/01

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

Journal Articles

JAEA Reports

Annual report of Engineering Services Department on JFY2019

Engineering Services Department

JAEA-Review 2021-011, 86 Pages, 2021/08

JAEA-Review-2021-011.pdf:5.35MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2019. We hope that this report may help to future work.

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

Journal Articles

The Effects of steam addition on the unstable behavior of hydrogen-air lean premixed flames under the adiabatic and non-adiabatic conditions

Furuyama, Taisei*; Thwe Thwe, A.; Katsumi, Toshiyuki; Kobayashi, Hideaki*; Kadowaki, Satoshi

Nihon Kikai Gakkai Rombunshu (Internet), 87(898), p.21-00107_1 - 21-00107_12, 2021/06

The effects of steam addition on the unstable behavior of hydrogen-air lean premixed flames under adiabatic and non-adiabatic conditions were investigated by numerical calculations. Adopting a detailed chemical reaction mechanism of hydrogen-oxyfuel combustion modeled by 17 reversible reactions of 8 active species and diluents, a two-dimensional unsteady reaction flow was treated based on the compressible Navier-Stokes equation. As the steam addition and heat loss increased, the burning velocity of a planar flame decreased and the normalized burning velocity increased. The addition of water vapor promotes the unstable behavior of the hydrogen-air lean premixed flame. This is because the thermal diffusivity of the gas decreases and the diffusion-thermal instability increases. The effect of adding water vapor on the instability of hydrogen premixed flames is a new finding, and it is expected to connect with hydrogen explosion-prevention measures as in NPP.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-09; 1.9% pressure vessel top small break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2021-006, 61 Pages, 2021/04

JAEA-Data-Code-2021-006.pdf:2.78MB

An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.

JAEA Reports

Data report of ROSA/LSTF experiment SB-SL-01; Main steam line break accident

Takeda, Takeshi

JAEA-Data/Code 2020-019, 58 Pages, 2021/01

JAEA-Data-Code-2020-019.pdf:3.85MB

An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.

Journal Articles

Experiments of self-wastage phenomena elucidation in steam generator tube of sodium-cooled fast reactor

Umeda, Ryota; Shimoyama, Kazuhito; Kurihara, Akikazu

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(4), p.234 - 244, 2020/12

Sodium-water reaction caused by failure of the steam generator tube of sodium-cooled fast reactor induce the wastage phenomenon, which has erosive and corrosive feature. In this report, the authors have performed the self-wastage experiments under high sodium temperature condition to evaluate the effect of wastage form/geometry by using two types of initial defect such as the micro fine pinhole and fatigue crack, and water leak rate on self-wastage rate. Based on the consideration of crack type influence, it was confirmed that self-wastage rate did not strongly depend on the initial defect geometry. As a mechanism of the self-plug phenomenon, it is speculated that sodium oxide intervenes and inhibits the progress of self-wastage. The dependence of initial sodium temperature on self-wastage rate was clearly observed, and new self-wastage correlation was derived considering the initial sodium temperature.

Journal Articles

Development of Short-Term Emergency Assessment system of Marine Environmental Radioactivity

Kobayashi, Takuya; Kawamura, Hideyuki; Kamidaira, Yuki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(11), p.635 - 639, 2020/11

It is important to predict the dispersion of radioactive materials released into the ocean due to nuclear accidents in the surrounding ocean of the east Asian countries. The Japan Atomic Energy Agency developed a Short-Term Emergency Assessment system of Marine Environmental Radioactivity (STEAMER) based on an oceanic dispersion model. STEAMER quickly predicts the oceanic dispersion of radioactive materials in the surrounding ocean of the east Asian countries using the online prediction data of oceanic condition. We validated the predictability of the oceanic dispersion and demonstrated the improvement of the predictability using an ensemble prediction method. Moreover, we developed a high resolution model in the coastal region using a Regional Ocean Modeling System (ROMS).

Journal Articles

Advancement of elemental analytical model in LEAP-III code for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*

Mechanical Engineering Journal (Internet), 7(3), p.19-00548_1 - 19-00548_11, 2020/06

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.

JAEA Reports

Annual report of Engineering Services Department on JFY2018

Engineering Services Department

JAEA-Review 2019-044, 96 Pages, 2020/03

JAEA-Review-2019-044.pdf:6.11MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2018. We hope that this report may help to future work.

Journal Articles

Oxidation kinetics of silicon carbide in steam at temperature range of 1400 to 1800$$^{circ}$$C studied by laser heating

Pham, V. H.; Nagae, Yuji; Kurata, Masaki; Bottomley, D.; Furumoto, Kenichiro*

Journal of Nuclear Materials, 529, p.151939_1 - 151939_8, 2020/02

AA2019-0197.pdf:1.61MB

 Times Cited Count:14 Percentile:86.19(Materials Science, Multidisciplinary)

201 (Records 1-20 displayed on this page)